旧版入口 英文版

运动与肠道菌群研究综述

发布时间:2019-12-10  来源:国家体育总局体育科学研究所科技书刊部

点击查看:原 文

  文章编号:1002-9826(2019)10-0056-06

  DOI:10. 16470/j. csst. 2019023

运动与肠道菌群研究综述

Review on Exercise and Intestinal Flora

宋 刚1,2*,廖帅雄1,3

SONG Gang1,2*,LIAO Shuaixiong1,3

  基金项目:

  西南大学中央高校基本科研业务专项资金项目(SWU1709116)

  *通信作者简介:宋刚(1977-),男,教授,博士,硕士研究生导师,主要研究方向为运动与内分泌,E-mail:songgang77@qq. com。

  作者单位:

  1.西南大学,重庆 400715;

  2.重庆市运动戒毒研究中心,重庆 400715;

  3.国家体育总局体质评价与机能监控重点实验室,重庆 400715

  1.Southwest University, Chongqing 400715, China;

  2.Chongqing Sports Drug Rehabilitation Research Center, Chongqing 400715, China;

  3.Key Laboratory of Physique Evaluation and Function Monitoring of the State Administration of Physical Education, Chongqing 400715, China

  摘 要:肠道菌群作为疾病治疗的新靶点与机体健康紧密相关。运动作为一种干预手段,能够有效调节肠道菌群的分布,提高菌群多样性,促进肠道微生态平衡。通过对运动与肠道菌群研究进行系统分析,旨在探究运动、肠道菌群与机体健康间的关系。研究发现,不同强度自愿转轮运动能够促进肠道内各菌群的有益分布,降低肠道炎症的发生,但中、高强度跑台运动不利于肠道菌群的发展;运动对肠道菌群的影响具有年龄的差异,年轻人的肠道菌群对运动刺激更敏感,且在运动干预初期运动对肠道菌群的影响更大。另外,肠道菌群的改变也能够反作用于机体,通过其代谢产物对运动产生影响。运动与肠道菌群的相互作用机制仍不清楚。通过系统分析来探究其相互作用的可能机制,为运动促进健康提供新的研究方向。

  关键词:肠道菌群;体育运动;疾病防治;健康

  Abstract: As a new target of disease treatment, intestinal flora is closely related to the body health. Exercise, as an intervention method, can effectively regulate the distribution of intestinal flora, increase the diversity of flora, and promote the intestinal micro-ecological balance. Through the systematic analysis of exercise and intestinal flora, the purpose of this paper is to explore the relationship between exercise, intestinal flora and body health. The study found that the voluntary wheel exercise with different intensities could promote the beneficial distribution of intestinal flora and reduce the occurrence of intestinal inflammation, but moderate and high intensity treadmill exercise is not conducive to the development of intestinal flora. The effect of exercise on intestinal flora is age-different. The intestinal flora of young people is more sensitive to exercise stimulation, and exercise has a greater impact on intestinal flora in the early stage of exercise intervention. In addition, the changes in intestinal flora can also react to the body. It affects exercise through its metabolites. The interaction mechanism between exercise and intestinal flora is still unclear. The paper explores the possible mechanism of its interaction through systematic analysis, and provides a new research direction for exercise to promote health.

  Keywords: intestinal flora; exercise; disease control and prevention; health

  中图分类号:G804.5 文献标识码:A

  0 前言

  肠道拥有1亿以上神经细胞,具有感知能力,并独立于大脑而自主地控制肠道的行为。1999年,美国哥伦比亚大学细胞生物学和解剖学教授Gershon在其著作中提出,肠道是人体“第二大脑”(Gershon,1999)。存在于肠道内的各种微生物统称肠道菌群,大约有10万亿个细菌寄生于人体肠道中,该数量约为人体细胞总数的10倍,包括大肠杆菌、乳酸菌、双歧杆菌、消化球菌、链球菌等(Gagliani et al.,2014;Kaelberer et al.,2018)。所以,肠道菌群又被视为人体“第二基因组”(张双双 等,2017)。依据各菌种在肠道中的数量差异可将其分为主要菌群(数量≥10 cfu/g)和次要菌群(数量<10 cfu/g)两大类。这些菌落在婴儿时期就寄生在人体中,大部分栖息在人体大肠中。不同人体间肠道菌群的组成及各菌种间丰度均存在极大差异,但结构相对稳定(Flores et al.,2014)。因此,肠道菌群可作为不同人的身份标志来反映机体健康(Lozupone et al.,2012)。

  人体肠道内各菌群间处于动态平衡。菌群间的这种平衡状态有利于维持机体正常生理代谢功能。然而,这种平衡状态极易受到外界环境和宿主自身因素的影响,如卫生习惯和饮食结构的改变、运动锻炼和使用抗生素以及外界微生物的干扰,都可能导致肠道菌群间的失衡(Basterfield et al.,2010)。证据表明,人体肠道菌群不仅在机体正常生理代谢和免疫功能方面起关键作用,而且还与多种慢性疾病相关(Cani,2014;Dodd et al.,2017),如肠道菌群紊乱将导致诸如肥胖、2型糖尿病、心血管疾病、炎症性肠道疾病和癌症等疾病的发生(Bermon et al.,2015; Booth et al.,2012; Routy et al.,2018; Tang et al.,2017)。近 期 研 究 显示,肠道菌群还可能与非酒精性脂肪肝、认知功能障碍、多发性硬化症、帕金森、阿尔茨海默症以及自闭症等存在关联(Alisi et al.,2012; Berer et al.,2017; Cryan et al.,2012;Harach et al.,2017; Hu et al.,2016; Mudd et al.,2017)。

  早在2007年美国运动医学学会(ACSM)就正式提出并倡导运动是良医的理念,运动能够治疗多达26种疾病(Timmons et al.,2012),包括肥胖、糖尿病、认知功能障碍、肠易激综合征等,并且长期运动还能降低患癌症的风险(Johannesson et al.,2011;Johnson et al.,2015;Robsahm et al.,2013)。近来,运动与肠道菌群的研究已成为热点,本文对国内外关于运动与肠道菌群领域的研究文献进行系统检索,并分析探讨运动、肠道菌群和健康的关系。

  1 运动对肠道菌群的影响

  运动能够有效防治慢性病的发生,这些慢性疾病中有大部分被发现与肠道菌群紊乱有关,如肥胖、高血压、抑郁症、糖尿病、呼吸系统疾病、心血管疾病等(Johnson et al.,2015)。推测运动可能与肠道菌群密切相关。著名遗传学家George Church 2019年6月在《Nature Medicine》发表的一项有趣研究发现,运动员中肠道内的韦荣球菌(veillonella)与运动能力相关,并进一步在小鼠中揭示这类细菌或许是通过将运动生成的乳酸转化为丙酸,来发挥增强运动性能的作用。马拉松选手长跑后,肠道菌群中韦荣球菌属丰度上升,从选手粪便中分离出一株非典型韦荣球菌,给小鼠灌胃可显著增加其力竭跑步时间;对优秀运动员队列进行宏基因组学分析,发现运动后韦荣球菌属将乳酸代谢为丙酸的甲基丙二酰辅酶A通路的基因丰度上升;同位素标记表明,血清乳酸可跨越肠上皮屏障进入小鼠肠道;结肠内灌注丙酸也可增长小鼠力竭跑步时间;韦荣球菌通过将运动生成的乳酸代谢为丙酸,来增强运动能力(Scheiman et al., 2019)。要指出的是,韦荣球菌是第一个被发现与长跑运动能力相关的肠道菌株。Clarke等(2014)发现,从事橄榄球运动的职业运动员其肠道菌群的菌群数量和多样性显著高于同年龄段且同体质指数(body mass index,BMI)的普通人群。乔德才等(2004)对7名长跑专业运动员展开的相关研究也发现,运动能够影响肠道菌群区系结构。目前,国内外对运动与肠道菌群的大部分研究认为运动有益于肠道菌群,但也有不一致的研究结果。可能与运动干预方式、运动干预前实验对象年龄差异、运动干预周期以及强度等差异有关。

  1.1 自愿转轮运动对肠道菌群的影响

  Campbell等(2016)对野生型肥胖雄性C57BL/6NTac小鼠进行12周自愿转轮运动训练,发现小鼠肠道中环氧合酶-2含量下降,普拉梭菌属含量上升。环氧合酶-2是促炎症因子,它的大量表达能够增强炎症反应并对机体造成损伤。而普拉梭菌是人体肠道中最为丰富的共生菌之一,参与肠道的抗炎反应。12周自愿转轮运动能够改变小鼠肠道内各菌群的分布,降低肠道炎症的发生。与Cambell等 (2016)的研究相似,Evans等(2014)对高脂饮食诱导的雄性C57BL/6小鼠也进行了12周自愿转轮运动干预。对比Cambell的研究,他们发现自愿转轮运动可明显改善高脂饮食导致的小鼠肠道菌群组成的变化。具体而言,运动小鼠肠道中拟杆菌含量上升而放线菌和厚壁菌门的丰度都呈现下降趋势。Mike等(2015)在为期6周自愿转轮运动干预的雄性F344大鼠肠道中也发现拟杆菌含量上升而厚壁菌门丰度下降,总菌种多样性上升的结果。此外,短期的自愿转轮运动干预就能够对机体肠道菌群产生显著影响。已有研究证实,6天的转轮运动,大鼠肠道菌群中有益菌群含量(如拟杆菌、乳酸菌等)和总菌种多样性就呈现显著增加的趋势(Queipo-Ortuno et al.,2013)。Janabi等(2016)在对马肠道菌群的研究中也发现,在运动训练刚开始阶段,肠道菌群受运动的影响更大。原因可能是长期同强度的运动干预,使肠道菌群对该强度逐渐适应,个别菌种和数量逐渐回复到运动前水平。

  针对不同年龄段个体,运动对于肠道菌群的改变在年轻机体中更为有效。Mika等(2015)的研究证实,同样在6周转轮运动干预下,青年大鼠肠道菌群相比成年大鼠菌群群落变化更大,菌种增加更为多样。在早期发育阶段,肠道菌群可塑性较强,运动易使肠道菌群发生改变(Houghton et al.,2018)。早期运动干预能够通过促进肠道菌群有益发展影响大脑功能代谢和心理健康(Mika et al.,2016)。

  1.2 跑台运动对肠道菌群的影响

  跑台运动对肠道菌群的影响与自愿转轮运动的结果不尽一致,且跑台运动强度对肠道菌群的影响结果不相同。

  Lambert等(2015)采用低强度跑台运动对患糖尿病小鼠持续干预6周,发现厚壁菌门和双歧杆菌丰度都显著增加,而拟杆菌与普雷沃菌的比值呈现下降趋势。双歧杆菌作为人体内重要的肠道益生菌,具有改善肠道功能、增强机体免疫和抗肿瘤、抗衰老等作用,低强度跑台运动能够促进这些有益菌群的发展(Lambert et al.,2015)。同样,Jennifer等(2014)在6周龄糖尿病大鼠中也发现,低强度跑台运动训练能够显著增加大鼠肠道中双歧杆菌的含量,并且糖尿病大鼠在跑台运动后产气荚膜梭菌水平与正常大鼠接近,空腹血糖及胰岛素抵抗等都得到显著改善。

  目前,关于中等强度跑台运动对肠道菌群的影响研究,结果存在较大差异。与低强度跑台运动结果相似,Petriz等(2014)发现,中等强度跑台运动也能够显著增加受试者肠道中厚壁菌门和乳酸菌的含量。与双歧杆菌类似,乳酸菌也是人体肠道内极其重要的有益菌种,它能够维持肠道微生态平衡,同时也能够改善人体肠道功能,增强机体免疫力和抵抗力,防止各种疾病的发生(尹胜利 等,2012)。然而,Lamoureux等(2017)的报道与Petriz等的实验结果存在差异,他们对野生型C57BL/6J小鼠进行为期8周的中等强度跑台运动干预,与久坐对照组相比,跑台运动组小鼠肠道炎症标志物(白细胞介素-1、白细胞介素-6、肿瘤坏死因子等)水平和肠道菌群的α与β多样性并无显著性差异。Cook等(2016)的报道则与Petriz的结果完全相反,他们发现,跑台运动训练不但未能有效改善受试者肠道菌群向有益于机体健康方向发展,反而增加了机体炎症因子的表达。实验中,他们将野生型C57BL/6J小鼠作为研究对象,采用每天40 min,8~12 m/min中等强度跑台运动,持续干预6周。实验结果发现,进行跑台运动小鼠腹泻率增加,肠道中白细胞介素-1β和白细胞介素-17基因表达上升,白细胞介素-6含量上升,同时,小鼠死亡率也呈现上升趋势。综上,在不同跑台运动强度,抑或在同一运动强度(中等强度)下,跑台运动对肠道菌群的影响结果都存在差异。是小鼠品种不同还是饮食干扰或是跑台运动时间不同所导致差异的存在,有待进一步研究。目前鲜见关于高强度跑台运动对肠道菌群影响的报道,最近有研究探讨高强度游泳运动对肠道菌群的影响。Yuan等(2018)在对6周龄雄性KM小鼠进行为期4周高强度游泳运动干预后发现,运动小鼠较对照组在胸腺、脾脏和肝脏结构上都表现出异常,且肠道菌群多样性也呈现降低趋势。提示,高强度跑台运动可能也不利于肠道菌群和机体健康的发展。

  不同运动形式对肠道菌群的影响也存在争议。同样在Cook等(2016)的研究中,6周中等强度跑台运动会增加小鼠机体炎症因子的表达,增加腹泻率,而同等强度和持续时间的自愿转轮运动却使小鼠体内炎症因子下降。Allen等(2015)的研究也发现,每周5次、每次40~60 mim、持续6周的中等强度跑台运动,小鼠肠道中软壁菌和变形菌等有害菌群丰度都较自愿转轮运动组显著增加,而拟杆菌和厚壁菌门丰度并无显著差异。关于以上两种运动形式对肠道菌群产生的差异,目前尚无研究探讨,并且两种运动方式分别如何对肠道菌群产生影响,其内在作用机制尚不清楚,有待后续研究进一步深入。

  2 肠道菌群对运动的影响

  前面研究已经证实,运动的确会对肠道菌群产生影响, 但肠道菌群本身也会影响机体的运动能力。

  德国马普研究所的Valenzano团队发现,年轻鱼肠道中的菌群能够明显提高老年鱼的运动能力。他们将鳉鱼作为研究对象,因为鳉鱼寿命仅几个月,是世界上寿命最短的脊椎动物,在3 周内即可达到性成熟,是研究衰老的绝佳模型。他们通过抗生素彻底清除中年鳉鱼的肠道菌群, 然后将年轻鳉鱼肠道内的菌群移植进入中年鳉鱼体内。移植成功后,中年鳉鱼肠道菌群与年轻鳉鱼类似。进一步研究发现,这些接受菌群移植的中年鳉鱼其寿命要显著长于未进行菌群移植的中年鳉鱼(平均寿命长37%)。此外, 这些年轻菌群还提高了中年鳉鱼的运动能力,它们在水族箱中的游动相比对照组更加频繁,其活跃度与年轻鳉鱼相似。但后续研究发现,老年鳉鱼的肠道菌群对年轻鳉鱼并未有影响。年轻鳉鱼的肠道菌群数量和多样性都显著高于中、老年鳉鱼,肠道菌群数量和多样性的增多能够有效促进宿主的新陈代谢,这可能是中年鳉鱼运动能力得以提升的原因(Smith et al.,2017)。

  除了鱼类外,Hsu等(2015)在哺乳类动物中也发现了与鳉鱼类似的情况。他们对无菌小鼠、只含脆弱拟杆菌小鼠和正常小鼠进行力竭性游泳测试,结果发现,其力竭时间与肠道菌群的丰富程度成正相关(正常小鼠81.6 min、只含脆弱拟杆菌小鼠67.2 min、无菌小鼠为39.0 min)。他们发现其原因可能与小鼠体内的抗氧化剂酶有关,认为肠道菌群对运动能力的影响可能依赖于过氧化氢酶和谷胱甘肽过氧化物酶的活性。与Hsu等(2015)的推测不同, Sampson等(2016)在研究肠道菌群对帕金森症的影响中提出,肠道菌群对运动能力的影响可能是通过分泌各种相关免疫因子,使宿主大脑中小胶质细胞活化,进而影响与运动相关的神经元最终影响宿主的运动能力。关于肠道菌群对运动的作用机理还有待进一步探讨。

  肠道菌群可通过分泌一系列代谢产物对机体运动能力产生影响,而运动不仅能够使体内肠道菌群更加多样化, 还能促进有益菌群生长,抑制病原菌。这会产生一个良性循环,即运动抑制致病菌并使有益菌群得到更好生长,而反过来有益菌群分泌各种对运动有益的因子,不断提高机体运动能力。肠道菌群多样性的增加以及致病菌群的减少和运动能力的提高也能够有效降低患各种疾病的风险。

  3 运动介导肠道菌群促进机体健康

  肠道菌群作为疾病治疗的新靶点已逐渐引起学者的关注。已有研究证实,肠道菌群与机体健康息息相关,它不仅是各种代谢性疾病,如肥胖、糖尿病等的诱因,也是导致各种急性和慢性肠道炎症的直接因素(Gopalakrishnan et al.,2018;Yu et al.,2017)。运动作为一种干预手段,能够有效调节肠道菌群的分布,提高菌群多样性,促进肠道微生态平衡,进而改善机体健康(Cronin et al.,2018)。

  肥胖症已成为一个严峻的全球性健康问题,被世界卫生组织(WHO)列为全球十大慢性疾病之首(Harris et al., 2012)。传统观点认为,肥胖是由高脂饮食和缺乏运动所致。近几年的研究表明,肠道菌群失衡也可能是诱发肥胖的另一关键因素。存在于人体肠道中的厚壁菌门能够促使机体更有效的吸收来自食物中的热量,从而导致肥胖(Villanueva-Millan et al.,2015)。动物实验研究证实,高脂饮食喂养导致肥胖小鼠肠道中厚壁菌门丰度显著高于瘦型小鼠,而拟杆菌数量则显著低于瘦型小鼠,且肥胖小鼠体内肠道菌群多样性也明显低于瘦型小鼠(Kotzampassi et al.,2014)。此外,人体研究也发现,肥胖人群体内拟杆菌与厚壁菌门比值显著低于正常人群。运动能够减弱甚至逆转肠道菌群失衡,从而有效改善肥胖症状。Denou等(2016)的研究发现,高强度间歇运动能够显著提高肥胖小鼠肠道内菌种多样性,尤其是结肠和盲肠中拟杆菌的丰度, 并且显著降低盲肠中厚壁菌门的水平。Kang等(2014)和Evans等(2014)分别对运动后的高脂饮食大鼠肠道菌群进行检测,也同样发现运动能够有效阻止高脂饮食诱导的厚壁菌门丰度的升高,提高肠道菌群多样性,促进菌群微生态平衡,有效缓解肥胖。

  短链脂肪酸(主要由肠道菌群分解人体不能消化的植物性多糖产生)作为肠道菌群发酵的终产物之一,被人体消化道内黏膜所吸收,通过一系列相互作用可对机体能量稳态和内分泌进行调节(Kuwahara,2014)。主要的短链脂肪酸包括乙酸、丙酸和丁酸,这些都是机体的主要碳源和能量来源。其中,丁酸还具有消除肠道炎症,促进肠道微生态平衡等作用(Allen et al.,2018a)。这些短链脂肪酸能够有效抵御溃疡性结肠炎对人体健康产生的危害(Weir et al.,2013)。研究证实,运动也能够调节肠道菌群对这些短链脂肪酸的分泌,从而有效防治肠道炎症的发生(Allen et al.2018b; Matsumoto et al.,2008)。此外,运动也可以通过增加抗氧化物酶(谷胱甘肽过氧化物酶和过氧化氢酶)、抗炎细胞因子(白细胞介素-10)和抗凋亡蛋白(Bcl-2)在肠淋巴细胞中的表达,以及降低肿瘤坏死因子-α与促炎性细胞因子(白细胞介素-17)的水平,达到缓解肠道炎症促进机体健康的作用(Hoffman-goetz et al.,2003,2008; Packer et al.,2012;Spagnuolo et al.,2009)。

  运动还可通过肠道菌群途径有效防治其他各种慢性疾病(Hartstra et al.,2015;Howitt et al.,2012)。提示,肠道菌群可以作为新的疾病治疗靶点,针对不同人群制定科学可行的运动处方,进一步促进人体健康。

  4 肠道菌群移植与监管

  肠道菌群移植,是指将来自供者的粪便样品转移到受试者体内,从而改善受试者肠道菌群分布。在某些情况下, 肠道菌群移植成为治疗某些疾病的唯一方法(Hoffmann et al.,2017)。随着人们对肠道菌群功能的深入了解,菌群移植将变得越来越普遍。肠道菌群移植主要通过两种方式进行:一种与灌肠剂相似,将粪便样品直接注射到受试者肛门中;另一种是将粪便样品通过管子导入受试者肠道深处。在美国,肠道菌群移植受国家药物食品管理局等机构的监管,志愿者所捐赠的粪便样品被存储在与血库相似的粪便库中。肠道菌群移植也必须以保证患者安全为前提, 但对于捐赠的粪便样品具体应进行如何处理,目前还未得出一致的结论。由于粪便样品获取的简易性,若监管存在缺失则会导致一系列问题。我国应当在此领域开展监管, 预防出现可能的生物制品滥用和危害。


图1运动影响肠道菌群促进机体健康(Campbell et al.,2017)

Figure 1.Exercise Affects Intestinal Flora to Promote Health

  注:肠道菌群的失衡和代谢综合征与肠道炎症有关,高脂饮食和缺乏运动等可能是导致失调的原因,然而,肠道菌群组成的变化会进一步促进这些慢性疾病的发展,这些慢性病间也会彼此恶化(图中双箭头表示),而运动对于肠道健康并促进肠道菌群种类多样化都被证明是一种有效的干预手段。

  5 结论

  运动能够影响肠道菌群,而肠道菌群也能够影响机体运动能力,运动干预形式和强度的不同对肠道菌群影响结果也存在差异,背后的机制亟待研究。运动、肠道菌群和人体健康之间的关系提示,可将肠道菌群作为疾病治疗的新靶点,是以后运动治疗疾病的新兴研究趋势。

  参考文献:

  乔德才,陈敬,魏桂芳,等,2004.采用DNA指纹图谱技术分析中长跑运动员肠道菌群结构特征[J].中国运动医学杂志,23(5): 517-521.

  尹胜利,杜鉴,徐晨,2012.乳酸菌的研究现状及其应用[J].食品科技,37(9):25-29.

  张双双,张林,张成岗,2017.微生态制剂在运动领域的应用[J].中国运动医学杂志,36(1):80-83,90.

  ALISI A,CECCARELLI S,PANERA N,et al.,2012. Causative role of gut microbiota in non-alcoholic fatty liver disease pathogenesis[J]. Front Cell Infect Mi,2(UNSP 132):132-135.

  ALLEN J M,BERG MILLER M E,PENCE B D,et al.,2015. Volun-tary and forced exercise differentially alters the gut microbiome in C57BL/6J mice[J]. J Appl Physiol,118(8):1059-1066.

  ALLEN J M,MAILING L J,COHRS J,et al.,2018a. Exercise train-ing-induced modification of the gut microbiota persists after micro-biota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice[J]. Gut Microbes,9(2):115-130.

  ALLEN J M,MAILING L J,NIEMIRO G M,et al.,2018b. Exercise alters gut microbiota composition and function in lean and obese hu-mans[J]. Med Sci Sports Exer,50(4):747-757.

  BASTERFIELD L,MATHERS J C,2010. Intestinal tumours,colonic butyrate and sleep in exercised Min mice[J]. British J Nutr,104(3): 355-363.

  BERER K,GERDES L A,CEKANAVICIUTE E,et al.,2017. Gut microbiota from multiple sclerosis patients enables spontaneous au-toimmune encephalomyelitis in mice[J]. Proceedings Nat Academy Sci US Amrica,114(40):10719-10724.

  BERMON S,PETRIZ B,KAJENIENE A,et al.,2015. The microbiota: An exercise immunology perspective[J]. Exercse Immunol Rev, 21:70-79.

  BOOTH F W,ROBERTS C K,LAYE M J,2012. Lack of exercise is a major cause of chronic diseases[J]. Compr Physioly,2(2):1143- 1211.

  CAMPBELL S C,WISNIEWSKI P J,2017. Exercise is a novel pro-moter of intestinal health and microbial diversity[J]. Exerc Sport Sci Rev,45(1):41-47.

  CAMPBELL S C,WISNIEWSKI P J,NOJI M,et al.,2016. The effect of diet and exercise on intestinal integrity and microbial diversity in mice[J]. PLoS One,11(3):e150502.

  CANI P D,2014. Metabolism in 2013:The gut microbiota manages host metabolism[J]. Nat Rev Endocrinol,10(2):74-76.

  CLARKE S F,MURPHY E F,O’SULLIVAN O,et al.,2014. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut,63(12):1913-1920.

  COOK M D,ALLEN J M,PENCE B D,et al.,2016. Exercise and gut immune function:Evidence of alterations in colon immune cell ho-meostasis and microbiome characteristics with exercise training[J]. Immunol Cell Biol,94(2):158-163.

  CRONIN O,BARTON W,SKUSE P,et al.,2018. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sed-entary adults[J]. mSystems,3(3):1-17.

  CRYAN J F,DINAN T G,2012. Mind-altering microorganisms:The impact of the gut microbiota on brain and behaviour[J]. Nat Rev Neurosci,13(10):701-712.

  DENOU E,MARCINKO K,SURETTE M G,et al.,2016. High-inten-sity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity[J]. Am J Physiol-Endoc Me,310(11):E982-E993.

  DODD D,SPITZER M H,VAN TREUREN W ,et al.,2017. A gut bac-terial pathway metabolizes aromatic amino acids into nine circulat-ing metabolites[J]. Nature,551(7682):648.

  EVANS C C,LEPARD K J,KWAK J W,et al.,2014. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity[J]. PLoS One,9(3):e921193.

  FLORES G E,CAPORASO J G,HENLEY J B,et al.,2014. Temporal variability is a personalized feature of the human microbiome[J]. Genome Biol,15(12):531.

  GAGLIANI N,HU B,HUBER S,et al.,2014. The fire within:Mi-crobes inflame tumors[J]. Cell,157(4):776-783.

  GERSHON M D,1999. The enteric nervous system:A second brain[M]. Hosp Pract,31.

  GOPALAKRISHNAN V,SPENCER C N,NEZI L,et al.,2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science,359(6371):97-103.

  HARACH T,MARUNGRUANG N,DUTHILLEUL N,et al.,2017. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J]. Scientific Reports,7:41802.

  HARRIS K,KASSIS A,MAJOR G,et al.,2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?[J]. J Obes,2012:879151.

  HARTSTRA A V,BOUTER K E C,BACKHED F,et al.,2015. In-sights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care,38(1):159-165.

  HOFFMAN-GOETZ L,QUADRILATERO J,2003. Treadmill exercise in mice increases intestinal lymphocyte loss via apoptosis[J]. Acta Physiol Scand,179(3):289-297.

  HOFFMAN-GOETZ L,SPAGNUOLO P A,GUAN J,2008. Repeated exercise in mice alters expression of IL-10 and TNF-alpha in intesti-nal lymphocytes[J]. Brain Behav Immun,22(2):195-199.

  HOFFMANN D,PALUMBO F,RAVEL J,et al.,2017. Improving reg-ulation of microbiota transplants[J]. Science,358(6369):1390- 1391.

  HOUGHTON D,STEWART C J,STAMP C,et al.,2018. Impact of age-related mitochondrial dysfunction and exercise on intestinal microbiota composition[J]. J Gerontol A Biol Sci Med Sci,73(5): 571-578.

  HOWITT M R,GARRETT W S,2012. A complex microworld in the gut :Gut microbiota and cardiovascular disease connectivity[J]. Nat Med,18(8):1188-1189.

  HSU Y J,CHIU C C,LI Y P,et al.,2015. Effect of intestinal microbio-ta on exercise performance in mice[J]. J Strength Cond Res,29(2): 552-558.

  HU X,WANG T,JIN F,2016. Alzheimer’s disease and gut microbiota[J]. Sci China-Life Sci,59(10):1006-1023.

  JANABI A H D,BIDDLE A S,KLEIN D,et al.,2016. Exercise train-

  37(9):25-29.

  张双双,张林,张成岗,2017.微生态制剂在运动领域的应用[J].中国运动医学杂志,36(1):80-83,90.

  ALISI A,CECCARELLI S,PANERA N,et al.,2012. Causative role of gut microbiota in non-alcoholic fatty liver disease pathogenesis[J]. Front Cell Infect Mi,2(UNSP 132):132-135.

  ALLEN J M,BERG MILLER M E,PENCE B D,et al.,2015. Volun-tary and forced exercise differentially alters the gut microbiome in C57BL/6J mice[J]. J Appl Physiol,118(8):1059-1066.

  ALLEN J M,MAILING L J,COHRS J,et al.,2018a. Exercise train-ing-induced modification of the gut microbiota persists after micro-biota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice[J]. Gut Microbes,9(2):115-130.

  ALLEN J M,MAILING L J,NIEMIRO G M,et al.,2018b. Exercise alters gut microbiota composition and function in lean and obese hu-mans[J]. Med Sci Sports Exer,50(4):747-757.

  BASTERFIELD L,MATHERS J C,2010. Intestinal tumours,colonic butyrate and sleep in exercised Min mice[J]. British J Nutr,104(3): 355-363.

  BERER K,GERDES L A,CEKANAVICIUTE E,et al.,2017. Gut microbiota from multiple sclerosis patients enables spontaneous au-toimmune encephalomyelitis in mice[J]. Proceedings Nat Academy Sci US Amrica,114(40):10719-10724.

  BERMON S,PETRIZ B,KAJENIENE A,et al.,2015. The microbiota: An exercise immunology perspective[J]. Exercse Immunol Rev, 21:70-79.

  BOOTH F W,ROBERTS C K,LAYE M J,2012. Lack of exercise is a major cause of chronic diseases[J]. Compr Physioly,2(2):1143- 1211.

  CAMPBELL S C,WISNIEWSKI P J,2017. Exercise is a novel pro-moter of intestinal health and microbial diversity[J]. Exerc Sport Sci Rev,45(1):41-47.

  CAMPBELL S C,WISNIEWSKI P J,NOJI M,et al.,2016. The effect of diet and exercise on intestinal integrity and microbial diversity in mice[J]. PLoS One,11(3):e150502.

  CANI P D,2014. Metabolism in 2013:The gut microbiota manages host metabolism[J]. Nat Rev Endocrinol,10(2):74-76.

  CLARKE S F,MURPHY E F,O’SULLIVAN O,et al.,2014. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut,63(12):1913-1920.

  COOK M D,ALLEN J M,PENCE B D,et al.,2016. Exercise and gut immune function:Evidence of alterations in colon immune cell ho-meostasis and microbiome characteristics with exercise training[J]. Immunol Cell Biol,94(2):158-163.

  CRONIN O,BARTON W,SKUSE P,et al.,2018. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sed-entary adults[J]. mSystems,3(3):1-17.

  CRYAN J F,DINAN T G,2012. Mind-altering microorganisms:The impact of the gut microbiota on brain and behaviour[J]. Nat Rev Neurosci,13(10):701-712.

  DENOU E,MARCINKO K,SURETTE M G,et al.,2016. High-inten-sity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity[J]. Am J Physiol-Endoc Me,310(11):E982-E993.

  DODD D,SPITZER M H,VAN TREUREN W ,et al.,2017. A gut bac-terial pathway metabolizes aromatic amino acids into nine circulat-ing metabolites[J]. Nature,551(7682):648.

  EVANS C C,LEPARD K J,KWAK J W,et al.,2014. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity[J]. PLoS One,9(3):e921193.

  FLORES G E,CAPORASO J G,HENLEY J B,et al.,2014. Temporal variability is a personalized feature of the human microbiome[J]. Genome Biol,15(12):531.

  GAGLIANI N,HU B,HUBER S,et al.,2014. The fire within:Mi-crobes inflame tumors[J]. Cell,157(4):776-783.

  GERSHON M D,1999. The enteric nervous system:A second brain[M]. Hosp Pract,31.

  GOPALAKRISHNAN V,SPENCER C N,NEZI L,et al.,2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science,359(6371):97-103.

  HARACH T,MARUNGRUANG N,DUTHILLEUL N,et al.,2017. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J]. Scientific Reports,7:41802.

  HARRIS K,KASSIS A,MAJOR G,et al.,2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?[J]. J Obes,2012:879151.

  HARTSTRA A V,BOUTER K E C,BACKHED F,et al.,2015. In-sights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care,38(1):159-165.

  HOFFMAN-GOETZ L,QUADRILATERO J,2003. Treadmill exercise in mice increases intestinal lymphocyte loss via apoptosis[J]. Acta Physiol Scand,179(3):289-297.

  HOFFMAN-GOETZ L,SPAGNUOLO P A,GUAN J,2008. Repeated exercise in mice alters expression of IL-10 and TNF-alpha in intesti-nal lymphocytes[J]. Brain Behav Immun,22(2):195-199.

  HOFFMANN D,PALUMBO F,RAVEL J,et al.,2017. Improving reg-ulation of microbiota transplants[J]. Science,358(6369):1390- 1391.

  HOUGHTON D,STEWART C J,STAMP C,et al.,2018. Impact of age-related mitochondrial dysfunction and exercise on intestinal microbiota composition[J]. J Gerontol A Biol Sci Med Sci,73(5): 571-578.

  HOWITT M R,GARRETT W S,2012. A complex microworld in the gut :Gut microbiota and cardiovascular disease connectivity[J]. Nat Med,18(8):1188-1189.

  HSU Y J,CHIU C C,LI Y P,et al.,2015. Effect of intestinal microbio-ta on exercise performance in mice[J]. J Strength Cond Res,29(2): 552-558.

  HU X,WANG T,JIN F,2016. Alzheimer’s disease and gut microbiota[J]. Sci China-Life Sci,59(10):1006-1023.

  JANABI A H D,BIDDLE A S,KLEIN D,et al.,2016. Exercise train-

  ing-induced changes in the gut microbiota of Standardbred racehorses[J]. Comprative Exerc Physiol,12(3):119-130.

  JENNIFER L,Marc B,MYSLICKI J,2014. Exercise training modifies gut bacterial composition in normal and diabetic mice(LB434)[ J]. Faseb J,(28)434.

  JOHANNESSON E,SIMREN M,STRID H,et al.,2011. Physical activity improves symptoms in irritable bowel syndrome:A random-ized controlled Trial[J]. Am J Gastroenterol,106(5):915-922.

  JOHNSON E J,NILES B L,MORI D L,2015. Targeted recruitment of adults with type 2 diabetes for a physical activity intervention[J]. Diabetes spectrum,28(2):99-105.

  KAELBERER M M,BUCHANAN K L,KLEIN M E,et al.,2018. A gut-brain neural circuit for nutrient sensory transduction[J]. Sci-ence,361(eaat52366408SI):1219.

  KANG S S,JERALDO P R,KURTI A,et al.,2014. Diet and exercise orthogonally alter the gut microbiome and reveal independent asso-ciations with anxiety and cognition[J]. Mol Neurodegener,9:36.

  KOTZAMPASSI K,GIAMARELLOS-BOURBOULIS E J,STAVROU G, 2014. Retracted:Obesity as a consequence of gut bacteria and diet interactions[J]. ISRN obesity,DOI:10.1155/2014/651895.

  KUWAHARA A,2014. Contributions of colonic short-chain Fatty Acid receptors in energy homeostasis[J]. Front Endocrinol( Lausanne),5: 144.

  LAMBERT J E,MYSLICKI J P,BOMHOF M R,et al.,2015. Exercise training modifies gut microbiota in normal and diabetic mice[J]. Appl Physiol Nutr Me,40(7):749-752.

  LAMOUREUX E V,GRANDY S A,LANGILLE M,2017. Moderate exercise has limited but distinguishable effects on the mouse micro-biome[J]. mSystems,2(4).

  LOZUPONE C A,STOMBAUGH J I,GORDON J I,et al.,2012. Diversity,stability and resilience of the human gut microbiota[J]. Nature,489(7415):220-230.

  MATSUMOTO M,INOUE R,TSUKAHARA T,et al.,2008. Voluntary running exercise alters microbiota composition and increases n-bu-tyrate concentration in the rat cecum[J]. Biosci Biotech Bioch,72(2): 572-576.

  MIKA A,FLESHNER M,2016. Early-life exercise may promote last-ing brain and metabolic health through gut bacterial metabolites[J]. Immunol Cell Biol,94(2):151-157.

  MIKA A,VAN TREUREN W ,GONZÁLEZ A,et al.,2015. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats[J]. PLoS One,10(5):e125889.

  MUDD A T,BERDING K,WANG M,et al.,2017. Serum cortisol mediates the relationship between fecal &ITRuminococcus&IT and brain N-acetylaspartate in the young pig[J]. Gut Microbes,8(6): 589-600.

  NATURE,2017. ‘Young poo’ makes aged fish live longer[EB/OL]. [2018-07-29]. https://www.nature.com/news/young-poo-makes-aged-fish-live-longer-1.21770.

  PACKER N,HOFFMAN-GOETZ L,2012. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice[J]. Can J Aging,31(2):161-171.

  PETRIZ B A,CASTRO A P,ALMEIDA J A,et al.,2014. Exercise induction of gut microbiota modifications in obese,non-obese and hypertensive rats[J]. BMC Genomics,15:511.

  QUEIPO-ORTUNO M I,SEOANE L M,MURRI M,et al.,2013. Gut microbiota composition in male rat models under different nutrition-al status and physical activity and its association with serum leptin and ghrelin levels[J]. PLoS One,8(5):e65465.

  ROBSAHM T E,AAGNES B,HJARTAKER A,et al.,2013. Body mass index,physical activity,and colorectal cancer by anatomical subsites:A systematic review and meta-analysis of cohort studies[J]. Eurpean J Cancer Prev,22(6):492-505.

  ROUTY B,LE CHATELIER E,DEROSA L,et al.,2018. Gut micro-biome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science,359(6371):91.

  SAMPSON T R,DEBELIUS J W,THRON T,et al.,2016. Gut mi-crob-iota regulate motor deficits and neuroinflammation in a model of parkinson’s disease[J]. Cell,167(6):1469-1480.

  SCHEIMAN J, LUBER J M, CHAVKIN T A, et al., 2019. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism[J]. Nat Med, 25(7): 1104-1109.

  SMITH P,WILLEMSEN D,POPKES M,et al.,2017. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish[J]. Elife,6:e27014.

  SPAGNUOLO P A,HOFFMAN-GOETZ L,2009. Effect of dextran sulfate sodium and acute exercise on mouse intestinal inflammation and lymphocyte cytochrome c levels[J]. J Sports Med Phys Fit,49(1): 112-121.

  TANG A T,HOI J P C,KOTZIN J J,et al.,2017. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations[J]. Nature,545(7654):305.

  TIMMONS J A,BAAR K,DAVIDSEN P K,et al.,2012. Is irisin a hu-man exercise gene?[J]. Nature,488(7413):E9-E10.

  VILLANUEVA-MILLAN M J,PEREZ-MATUTE P,OTEO J A,2015. Gut microbiota:A key player in health and disease. A review focused on obesity[J]. J Physiol Bioch,71(3):509-525.

  WEIR T L,MANTER D K,SHEFLIN A M,et al.,2013. Stool microbi-ome and metabolome differences between colorectal cancer patients and healthy adults[J]. PLoS One,8(8):e70803.

  YUAN X,XU S,HUANG H,et al.,2018. Influence of excessive ex-ercise on immunity,metabolism,and gut microbial diversity in an overtraining mice model[J]. Scand J Med Sci Sports,28(5):1541- 1551.

  YU H,GAGLIANI N,ISHIGAME H,et al.,2017. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development[J]. Proc Natl Acad Sci U S A, 114(39):10443-10448.

  (收稿日期:2018-08-18; 修订日期:2019-09-30; 编辑:李晴慧)

扩展功能

本文关键词相关文章
本文作者相关文章